[1] M. Buhmann, J. Jäger, J. Jodar and M. Rodriguez (2024), "New methods for quasi-interpolation approximations: resolution of odd-degree singularities", Mathematics and Computers in Simulation, https://www.sciencedirect.com/science/article/pii/S0378475424001125
[2] X. Emery, J. Jäger and E. Porcu (2024) "Positive semidefinite kernels that are axially symmetric on the sphere and stationary in time: spectral and semi-spectral theory, and constructive approaches", Stochastic Environmental Research and Risk Assessment 38, https://link.springer.com/article/10.1007/s00477-024-02681-8
[3] Yuan Xu, M. Buhmann and J. Jäger (2024), "l^1-summability and Fourier series of B-splines with respect to their knots", Mathematische Zeitschrift, Volume 306, Article number: 53, https://link.springer.com/article/10.1007/s00209-024-03440-9
[4] J. C. Guella and J. Jäger (2024), "Strictly positive definite non-isotropic kernels on two-point homogeneous manifolds: The asymptotic approach", Positivity, Volume 28, Article number: 4, https://link.springer.com/article/10.1007/s11117-023-01022-3
[5] S. Hubbert and J. Jäger (2023), "Generalised Wendland functions for the sphere", Advances in Computational Mathematics, 49, Article number: 3, https://link.springer.com/article/10.1007/s10444-022-10005-z
[6] S. Hubbert, J. Jäger and J. Levesley (2023), "Convergence of sparse grid Gaussian convolution approximation for multi-dimensional periodic function", Applied and Computational Harmonic Analysis, 62, p.453-474 https://doi.org/10.1016/j.acha.2022.10.005
[7] M. Buhmann and J. Jäger (2022), "Strict positive definiteness of convolutional and axially symmetric kernels on $d$-dimensional spheres", Journal of Fourier Analysis and Applications 28, 1-25 https://link.springer.com/article/10.1007/s00041-022-09913-x
[8] M. Buhmann and J. Jäger (2022), "Strictly positive definite kernels on the 2-sphere: From radial symmetry to eigenvalue block structure", IMA Journal of Numerical Analysis 42, 1500-1525, https://doi.org/10.1093/imanum/drab012
[9] M. Buhmann and J. Jäger (2020), "Multiply monotone functions for radial basis function interpolation: Extensions and new kernels", Journal of Approximation Theory 256, Article number:105434, https://doi.org/10.1016/j.jat.2020.105434
[10] M. Buhmann and J. Jäger (2020), "Pólya-type criteria for conditionally strict positive definiteness of functions on spheres", Journal of Approximation Theory 257, Article number 105440, https://doi.org/10.1016/j.jat.2020.105440
[11] J. Jäger (2019), "A note on the derivative of isotropic positive definite functions on Hilbert spheres", SIGMA 15, Article number 081, https://doi.org/10.3842/SIGMA.2019.081
[12] J. Jäger, A. Klein, M. Buhmann and W. Skrandies (2016),"Reconstruction of electroencephalographic data using radial basis functions", Clinical Neurophysiology 127: 1978-1983, https://doi.org/10.1016/j.clinph.2016.01.003
[1] M. Buhmann and J. Jäger, "Quasi-interpolation", Cambridge University Press, (2022), https://doi.org/10.1017/9781139680523
Dissertation (2018), "Advances in radial and spherical basis function interpolation", Justus-Liebig-Universität, Giessen, http://geb.uni-giessen.de/geb/volltexte/2019/13953/